期刊专题

10.3724/SP.J.1089.2022.19128

利用几何信息辅助的超声心动图实时分割

引用
超声心动图的分割在临床上对医生的诊断有巨大作用.针对超声图像含有大量噪声、轮廓特征不明显、已有分割算法耗时久、目标分割不完整或引入不必要的背景区域的问题,提出一种基于全卷积网络与几何信息辅助分割的实时分割算法.首先,利用改进的YOLACT框架并行生成原型模板掩码和左右心室、心房的实例掩码的系数,并将两者线性组合获得实例掩码;然后,利用编码模块增强分割效果,提出位置编码模块避免卷积神经网络带来的全局位置信息丢失,以及提出形状编码模块减少心房心室差异小带来的分类错误.实验结果表明,在超声心动图像数据集上的APA,AMIoU和ADICE指标分别达到0.777,0.705和0.827,该方法比其他算法在精度上接近nnU-Net的结果,但速度可以达到27帧/s,比UNet++提升145%.

卷积神经网络、超声图、实时图像分割

34

TP391.41(计算技术、计算机技术)

四川省科技厅重点研发计划21DY0323

2022-09-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

1252-1259

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

34

2022,34(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn