期刊专题

10.3724/SP.J.1089.2022.19438

延时特征分析识别硬件木马

引用
针对芯片生产链长、安全性差、可靠性低,导致硬件木马防不胜防的问题,提出一种改进的机器学习分类算法.首先采集不同电压下电路的延时信号,通过KNN分类算法找出延时差异,若延时与干净电路相同,则判定为干净电路,否则判定有木马;然后联合多项式回归算法对木马延时特征进行拟合,基于回归函数建立木马特征库,最终实现硬件木马的准确识别.实验结果表明,对2000组延时单元的19个不同电压进行延时提取,同时考虑电压数目、K值与识别准确率,则电压数目与木马的识别准确率成正比,而参数K与识别准确率成反比;综合考虑的电压数目为19时,其预测准确率达到最高的95.2%;所提算法能明显地提升硬件木马的识别准确率和自动化程度.

硬件木马、机器学习、干净电路、多项式回归

34

TP391.41(计算技术、计算机技术)

国家自然科学基金61874156

2022-05-05(万方平台首次上网日期,不代表论文的发表时间)

共7页

515-521

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

34

2022,34(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn