期刊专题

10.3724/SP.J.1089.2022.18909

基于语义重定位的语义分割并行网络

引用
语义分割任务是对图像进行像素级别的分类预测,其难点在于对像素级别的准确预测和物体的边缘划分.现有方法大多采用基于编解码结构的网络模型,通过下采样快速扩充网络的感受野,但连续的下采样对特征图的空间信息造成了不可逆转的损失,为此,提出一种基于语义重定位的并行网络.设计了一条全局空间路径,在保持高分辨率的情况下提取丰富的空间信息并缓解多次下采样带来的信息丢失.在另一条上下文信息提取路径中,采用一个特征提取器,通过快速下采样扩充网络的感受野.此外,设计基于物体类别的语义重定位模块弥补多次下采样造成的上下文信息缺失,使用粗分割结果中该类目标区域的所有像素分别对目标区域中的每个像素进行引导.同时,采用Dice loss缓解数据中存在的正负样本不平衡问题,以获得更好的分割性能.最后,在Cityscapes和CamVid数据集上对所提网络进行了评价.实验结果表明,与已有分割网络相比,在CamVid数据集上,SRPNet在mIoU指标上能提升3.1%,在Cityscapes数据集上,SRPNet在mIoU指标上能提升1.8%.

语义分割、语义重定位、特征提取、特征融合

34

TP391.41(计算技术、计算机技术)

国家重点研发计划2018AAA0102102

2022-03-29(万方平台首次上网日期,不代表论文的发表时间)

共9页

373-381

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

34

2022,34(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn