期刊专题

10.3724/SP.J.1089.2022.18926

基于改进Pix2Vox的单图像三维重建网络

引用
为进一步提升由单图像进行三维重建的精度,通过对Pix2Vox网络进行改进,提出一种基于深度学习的方法实现单图像三维重建的神经网络.首先,在Pix2Vox网络结构中增加多尺度连接和通道注意力机制,以保留多尺度信息,强化重点特征学习;其次,提出一个阈值计算模块,实现了适应不同类别的阈值设定方法,优化阈值取值;最后,提出一种融合型损失函数,融合模型的结构损失和类别损失,减小不平衡数据与类间差异对重建效果的影响.实验结果表明,该网络在公共数据集ShapeNet的13种模型类别上,平均IoU指标达到0.670,比Pix2Vox等网络取得了更好的单图像三维重建效果.

三维重建、单幅图像、深度学习、注意力机制、损失函数

34

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;浙江省大学生科技创新活动计划

2022-03-29(万方平台首次上网日期,不代表论文的发表时间)

共9页

364-372

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

34

2022,34(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn