期刊专题

10.3724/SP.J.1089.2022.18843

特征融合生成对抗网络的水下图像增强

引用
针对水下图像对比度低和颜色失真等问题,提出一种特征融合生成对抗网络的水下图像增强算法.首先,对水下退化图像进行颜色校正,并以卷积神经网络提取颜色校正后图像的特征;其次,以基于U-Net的特征提取网络提取水下退化图像特征,并将其与颜色校正图像的特征融合;最后,通过卷积神经网络完成融合特征到增强图像的重构.在Underwater-ImageNet数据集上与其他算法相比,水下图像评价指标(underwater image quality measure,UIQE)提高0.308,自然图像评价指标(natural image quality evaluator,NIQE)降低0.638,增强后的水下图像对比度和清晰度提升并且颜色更真实.

水下图像增强;特征融合;生成对抗网络;U-Net

34

TP391.41(计算技术、计算机技术)

国家自然科学基金;常州市应用基础研究计划;中央高校基本科研业务费

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共9页

264-272

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

34

2022,34(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn