面向交通标志检测的尺度感知双向特征金字塔网络
实时精准的交通标志检测是实现自动驾驶和智能交通的重要技术之一.针对真实智能驾驶场景中背景复杂且交通标志尺度较小,现有的检测方法容易出现错检和漏检等问题,提出一种尺度感知的双向特征金字塔网络,实现复杂交通场景中实时、精准的交通标志检测.首先,为解决微小标志在传统金字塔网络中尺度丢失的问题,通过构建自底向上和自顶向下的双向金字塔网络,循环地学习尺度感知的融合特征;然后引入前景注意力模块和尺度感知损失函数,学习和优化不同尺度下的前景显著特征和关联,实现多尺度前景目标分离;最后,引入轻量级和非轻量级主干卷积网络,可以同时提高模型效率和精度.在真实复杂场景的交通标志数据集TT100K和STSD中的实验结果表明,该方法的检测精度达到了66.7%和60.9%,同时实时检测速率达到了30帧/s.
交通标志检测;尺度感知;前景注意力;轻量级网络
34
TP391.41(计算技术、计算机技术)
国家自然科学基金;武汉市科技计划
2022-01-14(万方平台首次上网日期,不代表论文的发表时间)
共9页
133-141