期刊专题

10.3724/SP.J.1089.2022.18833

多尺度融合残差编解码器的低照度图像增强方法

引用
在低光照环境下,由于光子数极少且噪声较大,线阵相机的感光源不能充分曝光,从而导致图像的质量下降.为此,提出一种多尺度融合的残差编解码器的低照度图像增强方法,直接学习原始传感器R AW明暗图像之间的端到端映射,在完全恢复原始图像细节和色彩的同时有效增强图像的亮度;为了增加特征多样性并加快网络训练速度,在网络结构中加入残差块;为了聚合上下文的全局多尺度特征,设计一个密集上下文特征聚合模块,以弥补网络深层缺失的空间信息.基于SID数据集,与其他10种方法进行对比实验,结果表明,所提方法在视觉效果、定量评价(PSNR和SSIM)方面都明显优于其他大部分方法,可以在恢复图像亮度的同时,有效地表示图像的边缘和色彩等,并在弱光增强下获得令人满意的视觉质量.

图像增强;低照度;特征融合;残差网络

34

TP391.41(计算技术、计算机技术)

国家重点研发计划;西安邮电大学研究生创新基金;陕西省网络数据分析与智能处理重点实验室专项基金

2022-01-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

104-112

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

34

2022,34(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn