基于聚集残差生成对抗网络的图像去模糊
针对现有图像去模糊算法存在的处理模糊种类单一、耗时长等问题,提出了一种基于聚集残差生成对抗网络的图像去模糊算法.首先,利用生成对抗网络,生成重建图像判别标签,使最后生成的图像更加接近清晰图像;其次,结合聚集残差网络与通道注意力模块,构成特征提取模块,提取中间层的有用特征信息;最后,采用WGAN的Wasserstein-1距离与感知损失结合作为损失函数训练模型,保证生成图像与清晰图像在内容上的一致性.在PyTorch环境下用GOPRO数据集和Kohler数据集测试所提算法,并与L0范数先验、暗通道先验、特异性去模糊、DeepDeblur,DeblurGAN等算法进行对比.实验结果表明,所提算法应用于复原运动模糊图像和高斯模糊图像时,峰值信噪比等评价指标均高于其他算法,并且耗时更短.
图像去模糊;聚集残差;通道注意力;生成对抗网络
34
TP391.41(计算技术、计算机技术)
浙江省自然科学基金LY17F010015
2022-01-14(万方平台首次上网日期,不代表论文的发表时间)
共10页
84-93