期刊专题

10.3724/SP.J.1089.2022.18839

基于聚集残差生成对抗网络的图像去模糊

引用
针对现有图像去模糊算法存在的处理模糊种类单一、耗时长等问题,提出了一种基于聚集残差生成对抗网络的图像去模糊算法.首先,利用生成对抗网络,生成重建图像判别标签,使最后生成的图像更加接近清晰图像;其次,结合聚集残差网络与通道注意力模块,构成特征提取模块,提取中间层的有用特征信息;最后,采用WGAN的Wasserstein-1距离与感知损失结合作为损失函数训练模型,保证生成图像与清晰图像在内容上的一致性.在PyTorch环境下用GOPRO数据集和Kohler数据集测试所提算法,并与L0范数先验、暗通道先验、特异性去模糊、DeepDeblur,DeblurGAN等算法进行对比.实验结果表明,所提算法应用于复原运动模糊图像和高斯模糊图像时,峰值信噪比等评价指标均高于其他算法,并且耗时更短.

图像去模糊;聚集残差;通道注意力;生成对抗网络

34

TP391.41(计算技术、计算机技术)

浙江省自然科学基金LY17F010015

2022-01-14(万方平台首次上网日期,不代表论文的发表时间)

共10页

84-93

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

34

2022,34(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn