结合空间注意力机制与光流特征的微表情识别方法
针对微表情运动的局部性问题,提出一种将深度学习的空间注意力机制与微表情光流特征相结合的微表情识别自动方法.首先,采用帧差法识别缺少峰值帧标记的微表情样本的峰值帧;然后,利用TV-L1光流法提取微表情起始帧与峰值帧之间的光流水平、垂直分量图,并根据光流的水平、垂直分量图导出对应的光流应变模式图;将3个光流图以通道叠加的方式连接起来,构成微表情的光流特征图;最后,在Inception模块搭建的卷积神经网络中设计了一种包含可学习参数的空间注意力单元,使模型在特征提取过程中能够更加关注存在微表情运动的区域.在空间注意力单元中利用3?3和7?7这2种大小的卷积核进行空间注意力的推断,使模型能够综合地考虑不同尺度卷积核的注意力推断结果.实验结果表明,该方法在MEGC2019综合微表情数据集上的识别准确率达到0.788,优于已有的微表情识别方法.
微表情识别;深度学习;空间注意力机制;光流法;卷积神经网络;情绪分类
33
TP391.41(计算技术、计算机技术)
国家自然科学基金61763002
2021-11-05(万方平台首次上网日期,不代表论文的发表时间)
共12页
1541-1552