结合边缘轮廓和姿态特征的人体精确解析模型
针对着装场景中由于人体姿态、边缘轮廓、服装配饰的复杂性以及着装部位关节点被遮挡等因素导致人体解析精度较低的问题,提出一种结合边缘轮廓和姿态特征的人体精确解析模型.首先采用残差网络ResNet-101作为主干网络表征输入人体图像进行初步人体解析,得到粗解析特征;然后构建边缘轮廓模块,结合上采样后的全局和局部特征得到人体边缘轮廓;再基于着装姿态定义着装姿态损失函数,通过姿态估计模块提取人体姿态特征;最后联合粗解析特征、边缘轮廓和姿态特征,并定义结构损失和人体解析损失的组合函数输出精确的解析结果.在多个数据集上的实验结果表明,该模型的mIoU评测指标提高了1.96%,在人体的着装姿态和部位遮挡等方面获得了更准确的语义分割结果,能有效地提高着装人体解析的精度.
人体解析;着装场景;姿态估计;边缘轮廓;语义分割
33
TP391.41(计算技术、计算机技术)
国家自然科学基金;云南省中青年学术和技术带头人后备人才培养计划
2021-10-08(万方平台首次上网日期,不代表论文的发表时间)
共12页
1428-1439