期刊专题

10.3724/SP.J.1089.2021.18634

基于神经网络和体素模板的骨骼受损类型判别

引用
针对骨骼受损类型复杂多样、难以自动判别的问题,提出一种基于神经网络和体素模板的骨骼受损类型自动判别方法.首先构建一种区域分割且规则化的体素模板,以有效地表征形态结构不规则的骨骼受损区域;然后建立一种受损骨骼与体素模板之间的同构映射,用于提取受损区域的体素信息,并依此生成受损类型体素样本库;再结合医学先验知识定义一种受损区域体素间的约束关系,将连续受损区域作为单元,对同类型样本进行组合以扩充样本库;最后设计和训练神经网络模型对骨骼的受损类型进行自动判别.实验中采集352份股骨受损样本,其预测结果与骨科医师的临床诊断结论相比,准确率达97%,且分类准确率、时间性能和所识别的受损类型数目优于现有文献方法,结果表明,该方法能够辅助医生快速、有效地判断患者骨骼的受损类型,为骨折手术中内固定植入物的选取提供理论基础.

体素模板;神经网络;受损类型;平均化模型

33

TP391.41(计算技术、计算机技术)

国家自然科学基金;中央高校基金科研业务费专项;常州市科技支撑计划社会发展;江苏省自然科学基金;安徽高校协同创新项目

2021-08-27(万方平台首次上网日期,不代表论文的发表时间)

共13页

1295-1307

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn