期刊专题

10.3724/SP.J.1089.2021.18637

基于深度强化学习的舰载机动态避障方法

引用
针对高度异构、动态的航母甲板作业场景中的舰载机避障问题,提出一种结合预测算法和深度强化学习的避障方法.该方法包含场景建模、奖励模型和轨迹预测模型等模块.首先基于智能体状态和动作空间对航母甲板场景进行建模;然后利用最小二乘法对场景中动态障碍物的位置进行实时轨迹预测,并构造了包含路径预测模块的深度强化学习方法——环境预测深度Q网络(PDQN);最后利用该方法实现航母甲板作业场景中的舰载机动态避障.利用Python绘图集Matplotlib进行仿真实验,实验数据结果表明,相比于Q-learning,SARSA等方法,所提方法的准确率提升了15%~25%,路径长度短9%~39%,平均奖励值高30%~100%,收敛速度快1~2倍且训练平稳后准确率的标准差小2%~50%.

航空母舰、强化学习、轨迹预测、动态避障

33

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;河南省高等学校科技创新人才支持计划

2021-07-22(万方平台首次上网日期,不代表论文的发表时间)

共11页

1102-1112

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn