基于图神经网络的东巴画小样本分类
针对纳西族东巴画艺术形象线条突出、色彩分明、样本较少的特点,提出一种端到端的基于图神经网络的东巴画小样本分类方法.首先,设计多分辨率多尺度的图像特征提取网络,图像特征与边缘特征融合后嵌入图神经网络中作为节点,构建分类图神经网络;其次,以边标记作为架构并采用二维边标记特征作为图像分类依据,保留节点分类时所需的类内相似性和类间相异性;最后,提出自注意力机制与特征显著性注意力机制相结合的方法更新节点特征,增强了节点之间的特征关联性.模型使用Python实现并用RTX 2080Ti在自建东巴画数据集上进行实验,结果表明,所提方法较好地提取了东巴图像特征,保留了东巴画分类所需的图像局部细节和节点间相似性特征,与对比算法相比,提高了分类准确度,并有更低的分类精度标准差.
东巴画、小样本分类、边标记、图神经网络、特征显著性注意力
33
TP391.41(计算技术、计算机技术)
国家自然科学基金;国家自然科学基金;国家自然科学基金;云南省中青年学术技术带头人后备人项目;国家科技重大专项;国家科技重大专项;云南省科技厅应用基础研究计划
2021-07-22(万方平台首次上网日期,不代表论文的发表时间)
共11页
1073-1083