结合Pix2Pix生成对抗网络的灰度图像着色方法
针对神经网络在进行图像着色时容易出现物体边界不明确、图像着色质量不高的问题,提出结合Pix2Pix生成对抗网络的灰度图像着色方法.首先改进U-Net结构,采用8个下采样层和8个上采样层对图像进行特征提取和颜色预测,提高网络模型对图像深层次特征的提取能力;然后使用L1损失和smooth L 1损失度量生成图像与真实图像之间的差距,对比不同损失函数下的图像着色质量;最后加入梯度惩罚,在生成图像和真实图像分布之间构造新的数据分布,对每个输入数据进行梯度惩罚,改变判别器网络梯度限制方法,提高网络在训练过程中的稳定性.在相同实验环境下,使用Pix2Pix模型和summer2winter数据进行对比分析.实验结果表明,改进后的U-Net和使用smooth L 1损失作为生成器损失可以生成更好的着色图像;而L1损失能更好地保持图像结构信息,使用梯度惩罚可以加速模型的收敛速度,提高模型稳定性和图像质量;该方法能更好地学习图像的深层次特征,减少图像着色模糊现象,在有效地保持图像结构相似性的同时提高图像着色质量.
图像着色、生成对抗网络、损失函数、梯度惩罚
33
TP391.41(计算技术、计算机技术)
国家自然科学基金;陕西省自然科学基础研究计划;陕西省自然科学基础研究计划
2021-07-05(万方平台首次上网日期,不代表论文的发表时间)
共10页
929-938