期刊专题

10.3724/SP.J.1089.2021.18594

弱监督学习下的融合注意力机制的表面缺陷检测

引用
现有基于深度学习的缺陷检测方法通常采用强监督学习策略,检测效果依赖于样本的数量和标注的质量.针对上述问题,提出弱监督学习下融合注意力机制的神经网络算法,仅使用图像级别标签便可同时预测缺陷的位置和概率.首先对多尺度感受野模块提取的特征应用特征融合网络,获取更多边缘细节信息;然后通过多层次的自编码器挖掘特征的深层语义信息;同时通过三线性全局注意力模块进一步细化浅层特征的空间位置信息;最后对浅层边缘特征和深层语义特征进行融合增强,得到最终的精细缺陷特征,达到高效准确的自动化表面缺陷检测的目的.基于PyTorch框架用KolektorSDD电转向器表面缺陷数据集验证所提算法,并与U-Net等缺陷检测算法进行对比.检测视觉效果显示,所提算法可以保留更多的细节纹理信息,能够有效扩大细微缺陷与复杂背景之间的特征差异.通过大量实验表明,该算法在复杂场景下比其他模型更为准确,其精准率、F1值和总体精度都有所提升.

深度学习、表面缺陷检测、弱监督学习、注意力机制

33

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金

2021-07-05(万方平台首次上网日期,不代表论文的发表时间)

共9页

920-928

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn