融合图像方法的半实时轴承故障诊断方法
轴承在高负荷的环境下长时间运转经常会发生故障,造成巨大损失.若能在故障发生前期进行准确感知,则可以在很大程度上减少损失.通过分析轴承故障问题的特点,提出一种半实时的高准确率诊断方法,使用双路宽卷积核深度卷积网络(deep convolutional neural networks with double paths and wider kernels,DWDCNN)作为实时诊断算法,在结果出现异常或轴承处于高噪声环境下的时候对轴承的振动数据使用短时傅里叶变换(short time Fourier transform,STFT),将其转换为图像,再使用轻型多尺度胶囊网络(smaller inception capsule net,SICN)进行二次诊断.使用该算法与现有其他算法在凯斯西储大学(Case Western Reserve University,CWRU)数据集和添加不同强度噪声后的CWRU数据集上进行实验,对准确性和计算效率进行对比.结果显示DWDCNN模型使用0.12 ms即可完成一次预测,且在SNR=?4 dB的条件下达到80.07%的准确率,而SICN模型虽然计算时间较长,但是可以在SNR=?4 dB的条件下达到95.00%的准确率.
轴承、故障诊断、振动信号、卷积神经网络
33
TP391.41(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金;河北省自然科学基金
2021-07-05(万方平台首次上网日期,不代表论文的发表时间)
共9页
895-903