期刊专题

10.3724/SP.J.1089.2021.18544

深度特征融合的头发属性转移方法

引用
针对现有的属性转移方法无法有效地转移头发属性这一问题,提出一种深度特征融合的头发属性转移方法.该方法包括特征提取、属性向量获取和图像合成3个子网络.首先从特征提取网络中提取原图像特征,添加重构损失保持原图像的身份不变;然后在属性向量获取网络中构建头发特征与头发属性的映射模型,得到属性向量;最后将原图像特征与属性向量融合输入到合成网络,生成最终结果.在FFHQ数据集上进行了多种属性转移实验,结果表明,所提方法可以有效地转移头发属性,生成高分辨率的结果.大量在Celeba数据集上进行的实验结果表明,与现有的主流属性转移方法相比,所提方法可以取得更好的视觉效果.

头发、生成对抗网络、特征融合、属性转移

33

TP391(计算技术、计算机技术)

国家自然科学基金;上海市自然科学基金

2021-05-26(万方平台首次上网日期,不代表论文的发表时间)

共8页

772-779

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn