期刊专题

10.3724/SP.J.1089.2021.18509

卷积神经网络混合截断量化

引用
量化是压缩卷积神经网络、加速卷积神经网络推理的主要方法.现有的量化方法大多将所有层量化至相同的位宽,混合精度量化则可以在相同的压缩比下获得更高的准确率,但寻找混合精度量化策略是很困难的.为解决这种问题,提出了一种基于强化学习的卷积神经网络混合截断量化方法,使用强化学习的方法搜索混合精度量化策略,并根据搜索得到的量化策略混合截断权重数据后再进行量化,进一步提高了量化后网络的准确率.在ImageNet数据集上测试了ResNet18/50以及MobileNet-V2使用此方法量化前后的Top-1准确率,在COCO数据集上测试了YOLOV3网络量化前后的mAP.与HAQ,ZeroQ相比,MobileNet-V2网络量化至4位的Top-1准确率分别提高了2.7%和0.3%;与分层量化相比,YOLOV3网络量化至6位的mAP提高了2.6%.

卷积神经网络、混合精度量化、强化学习、混合截断

33

TP391.41(计算技术、计算机技术)

西安市科技计划201805040YD18CG245

2021-05-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

553-559

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn