双流网络信息交互机制下的微表情识别
针对深度学习的方法用于微表情识别时微表情识别的实验数据库非常稀缺,导致神经网络在学习的过程中知识获取有限而难以提高精度及泛化能力的问题,提出基于双流网络信息交互的微表情识别方法.通过改进的深度互学习策略引导图像序列不同模态之间的交互训练,提高网络的识别率.方法基于RGB图像序列建立主体网络,基于光流建立辅助网络;在训练阶段,通过设计互学习损失中的有监督学习损失和拟态损失,优化训练过程,使得每一种模态都能学习正确地预测训练样本的真实标识,同时能与其他模态的预测相匹配;在测试阶段,由于互学习机制增强了RGB分支的判别能力,因此可对光流分支进行剪裁,在保证精度的前提下提高识别速度.在CASME,CASMEⅡ和SMIC数据库上的实验结果表明,该方法有效地提高了识别精度,整体性能优于已有方法.
微表情、双流网络、信息交互、互学习机制
33
TP391.41(计算技术、计算机技术)
国家自然科学基金61573168
2021-05-08(万方平台首次上网日期,不代表论文的发表时间)
共8页
545-552