集成时空轨迹的动态属性网络表征学习
网络表征学习是当前信息网络数据表示的研究热点,相比于传统网络分析技术已显示出它的有效性和高效性.目前绝大多数研究仅将网络视为静态来处理,即网络结构不随时间演化而变化,而且很少考虑网络中丰富的节点属性信息,难以适应现实信息网络时刻变化的动态特性.同时考虑网络的动态性和节点属性,提出基于时空路径的动态属性网络表征学习(DAWalk),将结构特征与属性特征聚合为节点的嵌入表示.游走时空轨迹序列以捕获网络的结构特征以及动态演化趋势规律.在模型学习方面使用改进的自编码器模型,最小化序列中成对节点的距离损失,学习出序列节点对隐藏的高度非线性规律,使得学到的节点表示更具健壮性.实验表明,在可视化、链接预测、节点分类任务上,提出的DAWalk在3个数据集上的性能均优于其他基准算法.
网络表征学习、动态网络、动态图嵌入、属性网络
33
TP391.41(计算技术、计算机技术)
国家自然科学基金;浙江省自然科学基金;宁波市自然科学基金
2021-03-30(万方平台首次上网日期,不代表论文的发表时间)
共10页
487-496