期刊专题

10.3724/SP.J.1089.2021.18425

基于卷积神经网络的Leap Motion运动数据优化网络

引用
为提高Leap Motion设备的采集精准度,解决自遮挡、采样频率不稳定等设备固有问题,首先,设计了使用Leap Motion和动作捕捉设备的手部多模态同步运动采集方案,采集了日常动作数据集;其次,提出了基于卷积神经网络(convolutional neural network,CNN)的Leap Motion手部运动数据优化方法,使用日常动作数据集训练Leap Motion数据到动作捕捉数据的映射网络;最后,提出手指平面约束,确保网络输出数据保持稳定的手部骨骼结构.通过15名志愿者采集了6类动作共967550帧的同步运动数据集,进行了手指平面约束有效性、动作一致性实验,并与双向循环自编码器(bidirectional recurrent autoencoder,BRA)、双向编解码器(encoder-bidirectional-decoder,EBD)方法进行了精度对比.结果表明,文中方法支持使用Leap Motion获取固定采样频率且近似动捕设备精度的手部运动数据,效果较BRA和EBD更加稳定平滑.将文中方法应用于康复游戏中,明显减少了交互动作识别的错误次数.

运动数据优化、LeapMotion、卷积神经网络、多模态数据集、自遮挡

33

TP391.41(计算技术、计算机技术)

国家自然科学基金;中央高校基本科研业务经费

2021-03-30(万方平台首次上网日期,不代表论文的发表时间)

共9页

439-447

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn