基于循环训练法的变压器漏油检测
检查变压器是否存在漏油问题在维护电网安全与稳定方面具有重要价值.地面是否存在因漏油而产生的油污区域是判断变压器是否存在漏油问题的重要的依据.油污区域的形状各异、所处的环境复杂以及光照阴影的影响给漏油检测问题带来了挑战.阴影是自然界中的一种普遍存在的物理现象,对漏油检测的影响是不可避免的.为了消除阴影对漏油检测的影响,提出一种循环训练方法.通过直方图均衡化以增强困难样本油污和阴影之间的对比度,循环地训练增强后的图像来减弱阴影的干扰,以提高查全率;同时通过引入负样本图像缓解误检问题,以提高查准率.文中使用变电站真实环境下采集的数据,并以此构建了一个油污图像的数据集.基于此数据集设计8种方案进行对比实验.实验结果表明,与未使用所提方法的模型相比,使用该方法的模型能够有效地消除光照阴影对漏油检测的影响,显著提高漏油检测精确度.
变压器漏油检测、循环训练、困难样本、负样本
33
TP391.41(计算技术、计算机技术)
2021-03-30(万方平台首次上网日期,不代表论文的发表时间)
共8页
431-438