点云场景下基于结构感知的车辆检测
在自动驾驶领域,计算机对周围环境的感知和理解是必不可少的.其中,相比于二维目标检测,三维点云目标检测可以提供二维目标检测所不具有的物体的三维方位信息,这对于安全自动驾驶是至关重要的.针对三维目标检测中原始输入点云到检测结果之间跨度大的问题,首先,提出了基于结构感知的候选区域生成模块,其中定义了每个点的结构特征,充分利用了三维点云目标检测数据集提供的监督信息,通过预测该特征,网络可以学习到更具有鉴别能力的特征,从而提高候选框的生成质量;其次,将该特征加入到候选框微调阶段中,使得点云上下文特征和局部特征更加丰富.在三维点云目标检测数据集进行了实验,结果表明,文中方法能够在增加极少计算量的前提下,在候选区域生成阶段使用50个候选框0.7的IoU阈值下,提高超过13%的召回率;在候选框微调阶段,3种难度目标框的检测效果均有明显提升,表明了该方法对三维点云目标检测的有效性.
三维点云目标检测、结构特征、候选区域生成网络
33
TP391.41(计算技术、计算机技术)
国家自然科学基金;山东省自然科学基金;中央高校基本科研业务费专项资金
2021-03-30(万方平台首次上网日期,不代表论文的发表时间)
共8页
405-412