融合尺度降维和重检测的长期跟踪算法
针对长期目标跟踪中存在的目标遮挡、尺度变化和光照变化等干扰造成的跟踪失败问题,提出一种融合尺度降维和重检测的长期目标跟踪算法.该算法在长期相关性跟踪算法的平移估计和尺度估计基础上,采用主成分分析降维策略来减少计算量,并建立高置信度样本集;当目标长期遮挡或丢失时,通过自适应阈值来启动在线分类检测器和最佳伙伴相似度匹配,重定位目标位置,并对模板均衡更新.在OTB-2015等标准数据集的部分序列上定量和定性评估的实验结果表明,文中算法的平均距离精度为95.4%,平均重叠成功率为89.2%,平均跟踪速度为23.68帧/s,且在遮挡、尺度变化和光照变化等场景下表现优异,能有效地实现长期目标跟踪.
长期跟踪、相关滤波、主成分分析、高置信度样本集、最佳伙伴相似度
33
TP391.41(计算技术、计算机技术)
国家自然科学基金面上项目61772033
2021-03-30(万方平台首次上网日期,不代表论文的发表时间)
共10页
385-394