期刊专题

10.3724/SP.J.1089.2021.18438

结合双流特征融合及对抗学习的图像显著性检测

引用
为实现图像显著区域或目标的低级特征与语义信息有意义的结合,以获取结构更完整、边界更清晰的显著性检测结果,提出一种结合双流特征融合及对抗学习的彩色图像显著性检测(SaTSAL)算法.首先,以VGG-16和Res2Net-50为双流异构主干网络,实现自底向上、不同级别的特征提取;之后,分别针对每个流结构,将相同级别的特征图送入卷积塔模块,以增强级内特征图的多尺度信息;进一步,采用自顶向下、跨流特征图逐级侧向融合方式生成显著图;最后,在条件生成对抗网络的主体框架下,利用对抗学习提升显著性检测结果与显著目标的结构相似性.以P-R曲线、F-measure、平均绝对误差、S-measure为评价指标,在ECSSD,PASCAL-S,DUT-OMRON以及DUTS-test 4个公开数据集上与其他10种基于深度学习的显著性检测算法的对比实验表明,SaTSAL算法优于其他大部分算法.

显著性检测、双流特征融合、对抗学习、卷积塔、条件生成对抗网络

33

TP391.41(计算技术、计算机技术)

国家自然科学基金青年科学基金;河北省自然科学基金青年科学基金;河北省自然科学基金;河北省教育厅重点基金;2020 年河北师范大学研究生创新资助项目

2021-03-30(万方平台首次上网日期,不代表论文的发表时间)

共9页

376-384

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn