基于课程学习思想的目标检测增强算法
目标检测算法性能优劣既依赖于数据集样本分布,又依赖于特征提取网络设计.从这2点出发,首先通过分析COCO 2017数据集各尺度目标属性分布,探索了数据集固有的导致小目标检测准确率偏低的潜在因素,据此提出CP模块,该模块以离线方式调整数据集小目标分布,一方面对包含小目标图片进行上采样,另一方面对图片内小目标进行复制粘贴.然后,针对网络特征提取能力问题,受课程学习(CL)思想启发,提出CL层,该层用目标标签引导网络学习,用CL因子控制学习强度,使样本特征增强,便于网络进行特征提取.在COCO 2017数据集上使用CP模块,并在CenterNet中嵌入CL层,进行多组对比实验,采用平均检测准确率、小目标检测准确率、中目标检测准确率和大目标检测准确率作为评价指标,实验结果证明了CP模块和CL层的有效性.
课程学习、目标检测、特征提取
33
TP391.41(计算技术、计算机技术)
2021-03-02(万方平台首次上网日期,不代表论文的发表时间)
共9页
278-286