期刊专题

10.3724/SP.J.1089.2021.18318

基于图像语义的弱监督显著性物体检测

引用
为了减少显著性物体检测对像素级标签的依赖,提出了一种基于图像语义的弱监督显著性物体检测方法.利用鱼网络和注意力机制的组合模型,在图像语义热力映射图的基础上,对弱标签采用余弦相似度进行训练更新,同时在网络训练初期采用训练诱导策略,利用简单数据集对整个网络进行诱导训练,使其具有一定的能力.然后,经过不断地增加数据集的复杂性,使得网络提取特征的能力越来越强.在4个显著性检测数据集上进行实验,并与传统监督方法进行对比分析,实验结果表明,该方法的F-MAX值在各个数据集上平均提高0.03~0.08,MAE减少0.02~0.05,在较弱的监督标签下能更精确地提取图像中的显著性特征.

组合模型、语义映射图、余弦相似度、诱导训练

33

TP391.41(计算技术、计算机技术)

国家自然科学基金;辽宁省高等学校创新人才支持计划;大连民族大学服务国家战略专项

2021-03-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

270-277

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn