期刊专题

10.3724/SP.J.1089.2021.18482

自适应融合层级特征的混合退化图像复原算法

引用
多种退化类型混合的图像比单一类型的退化图像降质更严重,很难建立精确模型对其复原,研究端到端的神经网络算法是复原的关键.现有的基于操作选择注意力网络的算法(operation-wise attention network,OWAN)虽然有一定的性能提升,但是其网络过于复杂,运行较慢,复原图像缺乏高频细节,整体效果也有提升的空间.针对这些问题,提出一种基于层级特征融合的自适应复原算法.该算法直接融合不同感受野分支的特征,增强复原图像的结构;用注意力机制对不同层级的特征进行动态融合,增加模型的自适应性,降低了模型冗余;另外,结合L1损失和感知损失,增强了复原图像的视觉感知效果.在DIV2K,BSD500等数据集上的实验结果表明,该算法无论是在峰值信噪比和结构相似性上的定量分析,还是在主观视觉质量方面,均优于OWAN算法,充分证明了该算法的有效性.

自适应复原、混合退化、层级特征融合、感知损失

33

TP391.41(计算技术、计算机技术)

国家自然科学基金;云南省重大科技专项计划

2021-03-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

215-222

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

33

2021,33(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn