结构感知深度学习的三维形状分类方法
为了解决复杂、海量三维模型的形状识别问题,提出了一种结构感知深度学习的三维形状分类方法.通过联合学习三维模型的几何结构和空间结构,生成具有结构感知的特征向量表示,该特征向量具有更强的识别力与稳定性,在三维形状分类中取得显著的效果.首先,提取优化的多尺度热核特征,并通过CNN学习模型,有效地获取三维形状的几何结构特征;其次,建立多视图卷积学习网络提取三维形状的空间结构特征;最后,通过联合优化学习生成具有结构感知的深度特征表示.文中采用了C++,Matlab,TensorFlow框架实现,并在公开的三维数据库中进行了大量实验,实验结果表明,文中方法获取的深层结构特征对于复杂拓扑结构、大尺度几何形变的三维形状具有稳定性;与相关方法对比,在三维形状分类中具有更高的分类精度.
形状分类、结构感知、卷积神经网络、深度学习
33
TP391.41(计算技术、计算机技术)
国家自然科学基金;大连市科技创新基金
2021-01-27(万方平台首次上网日期,不代表论文的发表时间)
共10页
29-38