融合手势全局运动和手指局部运动的动态手势识别
传统基于手部轮廓或手部运动轨迹的动态手势识别方法,其提取的特征通常难以准确表示动态手势之间的区别.针对动态手势的复杂时序、空间可变性、特征表示不准确等问题,提出一种融合手势全局运动和手指局部运动的手势识别方法.首先进行动态手势数据预处理,包括去除手势无效帧、手势帧数据补全和关节长度归一化;然后根据给定的手部关节坐标,利用手势距离函数分段提取动态手势关键帧,并基于手势关键帧提取手在空间中的全局运动特征和手内部手指的局部运动特征;其次融合手势全局运动和手指局部运动的关键帧手势特征,并采用线性判别分析进行特征降维;最后利用带高斯核的支持向量机实现动态手势识别与分类.对DHG-14/28动态手势数据集中14类手势和28类手势数据集进行实验,其分类识别准确率分别为98.57%和88.29%,比现有方法分别提高11.27%和4.89%.实验结果表明,该方法能准确地表征动态手势并进行手势识别.
动态手势识别、手势全局运动、手指局部运动、关键帧、线性判别分析、支持向量机
32
TP391.41(计算技术、计算机技术)
国家自然科学基金;浙江理工大学科研基金
2020-09-24(万方平台首次上网日期,不代表论文的发表时间)
共10页
1492-1501