期刊专题

10.3724/SP.J.1089.2020.17984

类别均衡与局部中值损失联合监督的自然场景人脸表情识别

引用
近年来,卷积神经网络在实验室控制环境下的人脸表情识别任务中取得了很大进步,但是在自然场景中人脸表情识别方面仍然存在一些挑战.针对自然场景中人脸表情数据分布不平衡,以及由姿势、光照和性别等因素引起的类内差异大的问题,提出类别均衡与局部中值(class-balanced and local median,CALM)损失函数.CALM损失函数包含类别均衡Softmax损失函数和局部中值损失函数2个部分.其中,类别均衡Softmax损失函数将数据量较少且容易错分的害怕和厌恶2种表情标记为难样本,将其余5种表情标记为易样本;在网络训练过程中对难样本自适应地增大权重,以提高难样本的识别准确率,进而提高表情识别的平均准确率.此外,在每个类别中会有一些离类别内大多数样本较远的样本,它们的存在会导致用均值方法计算出的类别中心偏离类内大多数样本.在局部中值损失函数中,采用与每个样本属于同类别的若干近邻的中值作为类别中心,在一定程度上减弱离群样本对类别中心选择的影响.在RAF(real-world affective faces)数据集上进行实验,与局部子类方法相比,该方法的平均识别准确率提升了1.32%,证明了该方法的有效性.

人脸表情识别、数据不平衡、类内差异、损失函数、卷积神经网络

32

TP391.41(计算技术、计算机技术)

中央高校基本科研业务费专项2019JBM019

2020-09-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

1484-1491

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn