期刊专题

10.3724/SP.J.1089.2020.17949

敏感视频判别性特征投影识别算法

引用
网络的快速发展在给人们生活带来很多便利的同时,也存在着令人反感的敏感内容,如恐怖暴力视频等,这些内容严重影响着青少年的身心健康.因此,一种有效的敏感视频识别算法成为网络过滤技术中不可或缺的组成部分.近年来,多示例学习被引入到恐怖暴力类敏感视频识别中,并取得了令人瞩目的效果.由于该类视频中存在着很多冗余信息及部分非恐怖暴力帧的干扰,不可避免地影响了敏感视频的识别效果.因此提出了一种基于判别性特征投影的多示例学习算法,提出了一种基于自表示字典学习的示例选择框架,将示例作为字典,学习示例之间的最优表达关系,找到具有代表性的示例,并向代表示例进行投影构造了更具判别性的示例包特征.通过在恐怖暴力视频库以及VSD2014数据集上与现有多示例检测算法在准确率、召回率以及F1指标的对比,验证了该算法在恐怖暴力视频识别中的有效性.

敏感视频、自表示字典学习、视频情感、网络过滤

32

TP181(自动化基础理论)

国家自然科学基金;山东省高等学校青创科技支持计划

2020-07-01(万方平台首次上网日期,不代表论文的发表时间)

共7页

804-810

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn