敏感视频判别性特征投影识别算法
网络的快速发展在给人们生活带来很多便利的同时,也存在着令人反感的敏感内容,如恐怖暴力视频等,这些内容严重影响着青少年的身心健康.因此,一种有效的敏感视频识别算法成为网络过滤技术中不可或缺的组成部分.近年来,多示例学习被引入到恐怖暴力类敏感视频识别中,并取得了令人瞩目的效果.由于该类视频中存在着很多冗余信息及部分非恐怖暴力帧的干扰,不可避免地影响了敏感视频的识别效果.因此提出了一种基于判别性特征投影的多示例学习算法,提出了一种基于自表示字典学习的示例选择框架,将示例作为字典,学习示例之间的最优表达关系,找到具有代表性的示例,并向代表示例进行投影构造了更具判别性的示例包特征.通过在恐怖暴力视频库以及VSD2014数据集上与现有多示例检测算法在准确率、召回率以及F1指标的对比,验证了该算法在恐怖暴力视频识别中的有效性.
敏感视频、自表示字典学习、视频情感、网络过滤
32
TP181(自动化基础理论)
国家自然科学基金;山东省高等学校青创科技支持计划
2020-07-01(万方平台首次上网日期,不代表论文的发表时间)
共7页
804-810