期刊专题

10.3724/SP.J.1089.2020.1782

利用自监督卷积网络估计单图像深度信息

引用
为了提高利用深度神经网络预测单图像深度信息的精确度,提出了一种采用自监督卷积神经网络进行单图像深度估计的方法.首先,该方法通过在编解码结构中引入残差结构、密集连接结构和跳跃连接等方式改进了单图像深度估计卷积神经网络,改善了网络的学习效率和性能,加快了网络的收敛速度;其次,通过结合灰度相似性、视差平滑和左右视差匹配等损失度量设计了一种更有效的损失函数,有效地降低了图像光照因素影响,遏制了图像深度的不连续性,并能保证左右视差的一致性,从而提高深度估计的鲁棒性;最后,采用立体图像作为训练数据,无需目标深度监督信息,实现了端到端的单幅图像深度估计.在TensorFlow框架下,用KITTI和Cityscapes数据集进行实验,结果表明,与目前的主流方法相比,该方法在预测深度的精确度方面有较大提升,拥有更好的深度预测性能.

卷积神经网络、单图像深度估计、深度估计

32

TP391.41(计算技术、计算机技术)

科技部国家重点研发计划;国家自然科学基金;国家高科技发展计划;计算机软件新技术国家重点实验室创新基金

2020-07-07(万方平台首次上网日期,不代表论文的发表时间)

共9页

643-651

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn