期刊专题

10.3724/SP.J.1089.2020.17813

多模态目标的联合压缩跟踪

引用
针对多模态目标跟踪中大多仅考虑单个图像的异种特征融合或不同模态图像的同种特征融合,为了使得这两者间能自然集成,提出基于联合压缩感知的多模态目标统一跟踪方法.通过将多模态跟踪问题转化为多重e2-范数不等式约束下的多e1-范数联合最小化问题,并设计了能求解该联合最小化问题的特定增广拉格朗日乘子算法,从而实现快速而精准的目标跟踪,可同时处理来自同一图像或不同模态图像中的多种不同特征间的融合,并能自由地添加或删除特征.此外,还提出了基于稀疏集中度指标的目标模板协同更新方案,来筛选出表现最优的目标模板.在DCU,OTCBVS,BEPMDS,OTB50和VOT-TIR等数据集上采用逐帧跟踪的方法进行实验,结果表明在跟踪精度、成功率以及速度3个评价指标上,文中方法的平均性能分别达到了0.96,0.91和3.48.

多模态跟踪、压缩感知、增广拉格朗日乘子法

32

TP391.41(计算技术、计算机技术)

国家自然科学基金;广西自然科学基金;广西“八桂学者”创新研究团队

2020-07-07(万方平台首次上网日期,不代表论文的发表时间)

共12页

616-627

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn