期刊专题

10.3724/SP.J.1089.2020.17811

基于串联空洞卷积神经网络的网球场景语义分割

引用
室外网球场实景环境下的语义分割是开发网球运动服务机器人需要解决的一项关键技术.针对室外网球场环境由于光照、视角等因素的变化导致难以进行精细分割的问题,提出一种基于Deeplabv3架构的串联空洞卷积神经网络SACNet.该模型扩展了空洞卷积的多尺度模块,通过奇偶混合扩张率增大训练中特征图感受野,利用分组卷积减小SACNet模型时空复杂度.为克服小样本训练容易过拟合的问题,在经过预训练残差神经网络ResNet-50的基础上,通过冻结批量归一化(BN)层进行迁移学习.在自制小样本网球场数据集上进行实验结果表明,SACNet比现有Deeplabv3模型在测试精度提高了10.22%,且对于网球场边界和小目标语义分割结果更加准确.

深度学习、语义分割、空洞卷积、迁移学习、网球场景

32

TP391.41(计算技术、计算机技术)

国家自然科学基金61461022,61761024

2020-07-07(万方平台首次上网日期,不代表论文的发表时间)

共10页

606-615

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn