期刊专题

10.3724/SP.J.1089.2020.17652

基于特征传播的时域分割网络行为识别

引用
为了高效、准确地获得视频中的行为类别和运动信息,减少计算的复杂度,文中提出一种融合特征传播和时域分割网络的视频行为识别算法.首先将视频分为3个小片段,分别从相应片段中提取关键帧,从而实现对长时间视频的建模;然后设计一个包含特征传播表观信息流和FlowNet运动信息流的改进时域分割网络(P-TSN),分别以RGB关键帧、RGB非关键帧、光流图为输入提取视频的表观信息流和运动信息流;最后将改进时域分割网络的BN-Inception描述子进行平均加权融合后送入Softmax层进行行为识别.在UCF101和HMDB51这2个数据集上分别取得了94.6%和69.4%的识别准确率,表明该算法能够有效地获得视频中空域表观信息和时域运动信息,提高了视频行为识别的准确率.

特征传播、时域分割网络、行为识别、神经网络

32

TP391.41(计算技术、计算机技术)

国家自然科学基金61602397,61502407

2020-07-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

582-589

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn