期刊专题

10.3724/SP.J.1089.2020.17953

NURBS曲线拟合的最小二乘渐进迭代逼近优化算法

引用
为了使NURBS曲线更精确地拟合散乱数据点,提出了一种基于最小二乘渐进迭代逼近(least square progressive and iterative approximation,LSPIA)的NURBS曲线拟合优化算法.首先,确定一条初始NURBS曲线,利用LSPIA算法优化控制顶点;然后,分别优化数据点参数,拟合曲线的节点和权因子,每优化好一个变量,重新优化控制顶点;最后,经多次优化迭代得到高精度的NURBS拟合曲线.在优化每类变量时,为了避免被其他变量影响,保持其他变量不变.基于LSPIA的NURBS曲线拟合优化算法充分利用了LSPIA算法的优点,在迭代过程中,可以重复使用前一迭代步骤得到的控制顶点等数据,从而节省了运算时间.算法实例表明,该算法能获得一定保形效果.

NURBS、拟合、最小二乘、渐进迭代逼近

32

TP391.41(计算技术、计算机技术)

国家自然科学基金;浙江省自然科学基金

2020-07-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

568-574

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn