联邦学习可视化:挑战与框架
联邦学习是一种保证数据隐私安全的分布式机器学习方案.与传统的机器学习的可解释性问题类似,如何对联邦学习进行解释是一个新的挑战.文中面向联邦学习方法的分布式与隐私安全性的特性,探讨联邦学习的可视化框架设计.传统的可视化任务需要使用大量的数据,而联邦学习的隐私性决定了其无法获取用户数据.因此,可用的数据主要来自服务器端的训练过程,包括服务器端模型参数和用户训练状态.基于对联邦学习可解释性的挑战的分析,文中综合考虑用户、服务器端和联邦学习模型3个方面设计可视化框架,其包括经典联邦学习模型、数据中心、数据处理和可视分析4个模块.最后,介绍并分析了2个已有的可视化案例,对未来通用的联邦学习可视分析方法提出了展望.
联邦学习、可解释机器学习、数据隐私、异常检测
32
TP391.41(计算技术、计算机技术)
国家自然科学基金61772456,61761136020
2020-07-07(万方平台首次上网日期,不代表论文的发表时间)
共7页
513-519