复杂场景下遥感船舶的检测与分割定位
遥感图像船舶识别是目标识别的一个重要领域,在海防和救援方面具有重大应用价值.但遥感图像中的船舶普遍存在云雾遮挡、陆地背景干扰和体积小等因素所造成的识别难的问题.为了能准确识别复杂场景下船舶目标,在网络的特征提取部分加入了视觉注意机制,增强网络提取船舶特征信息的能力;并采用多级特征提取和去量化操作的学习方法来解决船舶体积小的问题;采用难样本重学习的学习策略来弱化云雾遮挡和陆地背景的干扰.通过上述方法,船舶识别的综合准确率达到了92.56%,召回率达到了89.26%,与相同实验环境(PyTorch)下其他常见目标检测算法相比,精确率和召回率都有明显提升.实验结果表明,文中方法在一定程度上解决了复杂场景下船舶分割和识别难的问题.实验中所使用代码和部分结果详见https://github.com/curioyang/First_paper.
遥感图像、目标识别、复杂场景、多级特征、难样本重学习
32
TP391.41(计算技术、计算机技术)
2020-04-09(万方平台首次上网日期,不代表论文的发表时间)
共14页
472-485