期刊专题

10.3724/SP.J.1089.2020.17926

人体前景的自动抠图算法

引用
在基于立体视觉的人体建模系统中,背景像素的移除可以减少不必要的立体匹配计算,提高人体模型重建效率.为此,在给定大量具有前景Alpha蒙板真值的人体图像作为训练数据的前提下,提出了一个端到端的深度学习网络,以实现系统采集图像中人体前景自动抠图.该深度学习网络包括2个阶段:人体前景分割阶段和人体前景Alpha抠图阶段.在人体前景分割阶段,采用Mask R-CNN网络中的目标检测和掩码生成2个负载,并结合训练数据进行迁移学习,得到了适用于人体前景二值化分割的模型网络.在人体前景Alpha抠图阶段,采用Encoder-Decoder网络架构实现Alpha蒙板的自动预测.首先引入核为5的非学习卷积层,以上一个阶段的二值化分割结果作为输入,自动得到三分图Trimap,再和人体前景训练数据一起作为此阶段抠图网络的输入;经过学习迭代,获得能够预测人体前景Alpha蒙板的模型网络.在实验部分,以单幅系统采集人体图像为输入,无需额外先验和人工交互,可以自动估计人体前景Alpha掩码结果.用户测试结果以及与其他方法的对比和分析证明了文中算法的可靠性和鲁棒性;同时,该自动抠图算法还对其他公开数据集的人体图像进行了掩码预测,实验结果表明该算法具有一定的泛化能力.

前景分割、Alpha抠图、深度学习、自动人体抠图

32

TP391.41(计算技术、计算机技术)

国家自然科学基金;浙江省重点研发计划项目

2020-06-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

277-286

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn