折棍变分贝叶斯图像分割算法
为提高图像分割的抗噪鲁棒性并解决分割数目的自适应确定问题,通过在聚类标签先验概率的折棍构造过程中建立Markov随机场,将空间相关性约束引入Dirichlet过程混合模型的概率建模,使聚类的空间平滑性得以增强,并采用变分推断方法获得聚类标签的收敛解析解,提出一种基于折棍变分贝叶斯推断的图像分割算法,实现了对像素聚类标签和分割数目的同步自适应学习,避免了传统方法中因引入空间相关性约束而出现的计算复杂问题.基于Berkeley BSD500图像测试数据集的数值实验结果表明,该算法具有比现有的混合模型聚类图像分割算法更高的PRI值,且在低于0.1的噪声方差条件下表现出了更优的抗噪鲁棒性.
混合模型、图像分割、空间相关性约束、贝叶斯推断
32
TP301.6(计算技术、计算机技术)
国家自然科学基金青年科学基金41606117
2020-06-12(万方平台首次上网日期,不代表论文的发表时间)
共7页
270-276