期刊专题

10.3724/SP.J.1089.2020.17936

基于分层学习的三维模型兴趣点提取算法

引用
针对基于学习的三维模型兴趣点提取问题,提出一种兴趣点分层学习的全监督算法.提取三维模型表面所有顶点的特征向量后,将人工标注的兴趣点分为稀疏点和密集点,对于稀疏点使用整个三维模型进行神经网络训练,对于密集点则找出兴趣点分布密集的区域进行单独的神经网络训练;然后对2个神经网络进行特征匹配,得到一个用于三维模型兴趣点提取预测的分类器.测试时,提取新输入的三维模型上所有顶点的特征向量,将其输入到训练好的分类器中进行预测,应用改进的密度峰值聚类算法提取兴趣点.算法采用分层学习的策略,解决了传统算法在模型细节处难以准确提取密集兴趣点的问题.在SHREC'11数据集上的实验结果表明,与传统算法相比,该算法提取兴趣点的准确率更高,出现的遗漏点和错误点更少,对解决越来越精细的三维模型的兴趣点提取问题有较大帮助.

三维模型、三维模型兴趣点、分层学习

32

TP391.72(计算技术、计算机技术)

国家自然科学基金;浙江省自然科学基金;宁波市自然科学基金;宁波市领军和拔尖人才培养工程择优资助科研项目;宁波市面向生命健康的智能大数据工程应用创新团队;宁波市科技计划项目;浙江大学CAD&CG国家重点实验室开放课题

2020-06-12(万方平台首次上网日期,不代表论文的发表时间)

共11页

222-232

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn