期刊专题

10.3724/SP.J.1089.2020.17856

二阶段端到端的图像去雾生成网络

引用
单幅雾天图像的恢复是计算机视觉领域的一个基础问题,现有的方法主要包括基于先验信息的去雾方法和基于学习的去雾方法.然而,在实践中,前者具有很强的假设先验,导致该类方法的应用场景具有一定的局限性;后者在获取大量的配对数据上很困难.针对这2类问题,提出一种基于非配对数据训练的二阶段端到端的自适应去雾生成网络,其基于循环生成式对抗网络框架,不同的是,在训练的过程中,提出一种二阶段映射策略.首先通过一级映射网络得到去雾结果;然后将该结果作为二级映射网络的输入,进一步提高去雾效果.另外,提出一种循环增强损失函数,并引入了先验信息约束生成器之间的映射关系.采用室内外多场景下的仿真雾图和真实雾图作为测试数据,通过全参考和无参考图像质量评价指标进行对比分析;实验结果表明,该方法不仅能够更好地适应处理各类雾天场景,有效地提高图像的峰值信噪比和结构相似度,且较好地复原了退化场景的边缘信息和色彩信息.

循环生成对抗网络、单幅图像去雾、先验知识、无监督学习

32

TP391.41(计算技术、计算机技术)

湖北省自然科学基金;湖北省教育厅科研项目;中国博士后基金

2020-06-12(万方平台首次上网日期,不代表论文的发表时间)

共9页

164-172

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn