二阶段端到端的图像去雾生成网络
单幅雾天图像的恢复是计算机视觉领域的一个基础问题,现有的方法主要包括基于先验信息的去雾方法和基于学习的去雾方法.然而,在实践中,前者具有很强的假设先验,导致该类方法的应用场景具有一定的局限性;后者在获取大量的配对数据上很困难.针对这2类问题,提出一种基于非配对数据训练的二阶段端到端的自适应去雾生成网络,其基于循环生成式对抗网络框架,不同的是,在训练的过程中,提出一种二阶段映射策略.首先通过一级映射网络得到去雾结果;然后将该结果作为二级映射网络的输入,进一步提高去雾效果.另外,提出一种循环增强损失函数,并引入了先验信息约束生成器之间的映射关系.采用室内外多场景下的仿真雾图和真实雾图作为测试数据,通过全参考和无参考图像质量评价指标进行对比分析;实验结果表明,该方法不仅能够更好地适应处理各类雾天场景,有效地提高图像的峰值信噪比和结构相似度,且较好地复原了退化场景的边缘信息和色彩信息.
循环生成对抗网络、单幅图像去雾、先验知识、无监督学习
32
TP391.41(计算技术、计算机技术)
湖北省自然科学基金;湖北省教育厅科研项目;中国博士后基金
2020-06-12(万方平台首次上网日期,不代表论文的发表时间)
共9页
164-172