基于低秩稀疏分解优化的图像标签完备
大量上传的网络图像因用户语义标注的随意性,造成了图像标签的不完备,大大降低了图像检索的效率.低秩稀疏是一种有效降低数据噪声的方法.为提高图像语义标签完备的准确度,提出一种基于低秩稀疏分解优化(LRSDO)的图像标签完备方法.首先结合待完备图像的视觉特征和语义搜索其近邻图像集;然后通过低秩稀疏分解模型获得其视觉特征与语义之间的映射关系,并以此预测该图像的候选标签;最后使用面向个体的标签共现频率方法对候选标签进行去噪优化,进而实现对其更加准确的自动图像标签完备.在基准数据集Corel5K和真实数据集Flickr30Concepts上进行了实验,结果表明,该方法在图像标签完备的平均准确率,平均召回率和覆盖率上均表现出更优的性能.
图像标签完备、低秩稀疏分解、标签预测、标签优化、语义标注
32
TP391.41(计算技术、计算机技术)
国家自然科学基金;国家自然科学基金青年科学基金
2020-06-12(万方平台首次上网日期,不代表论文的发表时间)
共9页
36-44