期刊专题

10.3724/SP.J.1089.2020.17663

利用对抗网络改进多标记图像分类

引用
为了更有效地对多标记图像进行分类,提出一个改进的卷积神经网络模型,通过融合多层次特征并利用空间金字塔池化来学习多标记图像中的多尺度特征,同时设计对抗网络生成新的样本辅助模型训练.首先,对传统卷积神经网络模型进行改进,利用空间金字塔池化层替换网络的最后一层,并将在ImageNet上预先训练好的参数传递给该模型;然后,通过将深层特征和浅层特征进行融合,使得模型对不同尺度的物体具有更好的识别能力;最后,设计了一个对抗网络生成带遮挡的样本,使模型对遮挡物体的识别也具有良好的鲁棒性.实验测试在2个基准数据集上进行,文中模型在Corel5K数据集上的平均查准率和平均查全率分别为0.457和0.427,mAP值达到0.442,而在PASCAL VOC2012数据集上的mAP值则达到0.85.实验结果表明,与当前国际先进的模型相比,该模型具有更好的有效性和更强的鲁棒性.

卷积神经网络、对抗网络、空间金字塔池化、参数迁移、多标记分类

32

TP391.41(计算技术、计算机技术)

国家自然科学基金;广西自然科学基金;广西多源信息挖掘与安全重点实验室基金

2020-06-12(万方平台首次上网日期,不代表论文的发表时间)

共11页

16-26

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

32

2020,32(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn