结合空间-光谱调制及图像分割的多光谱图像融合方法
为了进一步提高多光谱(MS)图像与全色(PAN)图像之间的融合质量,平衡空间细节的注入与光谱信息的保持,提出了一种基于局部自适应空间-光谱调制与图像协同分割的融合方法.该方法利用k-means算法、根据MS图像的光谱特性进行图像分割,得到不同的连通体组,进而基于局部连通体组构建了局部自适应光谱调制(LASpeM)系数和局部自适应空间调制(LASpaM)系数,分别对融合图像中的光谱与空间信息进行调制;其中,LASpeM系数的构建基于MS和PAN图像中的细节提取以及MS波段之间的光谱关系,LASpaM系数的构建则基于MS和低分辨率PAN图像之间光谱特性的局部差异及相关性.另外,引入融合与分割的协同思想,利用图像分割来优化融合结果,并根据融合结果的反馈信息对分割算法的参数进行调整.在Matlab环境下,采用2个卫星GeoEye-1和QuickBird数据集进行融合实验,结果表明,文中方法在主观视觉与客观评价指标方面总体上优于7种经典及流行的融合方法,能够平衡融合图像的空间信息注入和光谱信息保持,有效地减少光谱扭曲.
多光谱与全色图像融合、融合与分割的协同、局部自适应光谱调制、局部自适应空间调制、k-means算法
31
TP751.1(遥感技术)
国家自然科学基金61801513;装备预研基金61420100103
2019-12-31(万方平台首次上网日期,不代表论文的发表时间)
共12页
2101-2112