视觉注意力网络在工件表面缺陷检测中的应用
工件表面缺陷检测是现代化工业生产中不可缺少的环节,利用卷积神经网络实现工件表面缺陷检测能有效地提升检测效果.当工件表面出现微小缺陷时,缺陷部分的特征容易被其他区域的特征所掩盖,影响检测的准确率.针对这一问题,提出了每级由3个卷积模块和一个视觉注意力模块构成的3级视觉注意力网络.通过注意力模块生成软注意力模板,为卷积模块构成的主干网络的特征图加权,增强缺陷区域特征并抑制背景区域特征,提升缺陷检测的准确率.实验采用具有明显缺陷和微小缺陷的5类工件图像进行对比测试,结果表明,软注意力模板在容易出现缺陷的区域具有更高的权值;加入视觉注意力模块能将缺陷检测的准确率从90.9%提升至98.1%.
工件表面缺陷检测、视觉注意力、卷积神经网络、机器视觉
31
TP391.41(计算技术、计算机技术)
西安市科技计划项目201805040YD18CG245
2019-11-18(万方平台首次上网日期,不代表论文的发表时间)
共7页
1528-1534