期刊专题

10.3724/SP.J.1089.2019.17506

视觉注意力网络在工件表面缺陷检测中的应用

引用
工件表面缺陷检测是现代化工业生产中不可缺少的环节,利用卷积神经网络实现工件表面缺陷检测能有效地提升检测效果.当工件表面出现微小缺陷时,缺陷部分的特征容易被其他区域的特征所掩盖,影响检测的准确率.针对这一问题,提出了每级由3个卷积模块和一个视觉注意力模块构成的3级视觉注意力网络.通过注意力模块生成软注意力模板,为卷积模块构成的主干网络的特征图加权,增强缺陷区域特征并抑制背景区域特征,提升缺陷检测的准确率.实验采用具有明显缺陷和微小缺陷的5类工件图像进行对比测试,结果表明,软注意力模板在容易出现缺陷的区域具有更高的权值;加入视觉注意力模块能将缺陷检测的准确率从90.9%提升至98.1%.

工件表面缺陷检测、视觉注意力、卷积神经网络、机器视觉

31

TP391.41(计算技术、计算机技术)

西安市科技计划项目201805040YD18CG245

2019-11-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

1528-1534

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

31

2019,31(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn