结合目标检测与双目视觉的三维车辆姿态检测
随着城市规模的发展,车辆的需求在与日俱增,同时对自动驾驶技术的需求也在不断提高.为了增强自动驾驶系统对路面车辆的信息掌握能力,提出一种车辆姿态检测方法.首先利用基于深度学习的目标检测方法获取车辆在二维图片上的信息,结合深度相机利用双目视觉获取车辆的关键三维空间信息;然后综合二维与三维信息建立三维空间坐标,经过计算后实现车辆的三维边框绘制,绘制的三维边框能辅助区分出车辆在空间上的方位.文中方法为端对端方法,不需要其他额外的输入信息,能够实时展示在相机中.实验结果表明,该方法针对常见的路面停车场景有较好的识别效果,对自动驾驶系统有较好的辅助作用;对比目前流行的三维边框计算方法也展示了其准确性.
双目视觉、车胎检测、车辆三维边框
31
TP391.41(计算技术、计算机技术)
国家自然科学基金61702457;浙江省杰出青年科学基金LR14F020002
2019-11-18(万方平台首次上网日期,不代表论文的发表时间)
共10页
1518-1527