期刊专题

10.3724/SP.J.1089.2019.17381

概率加权测地距离的脑部MR图像超像素分割

引用
超像素是一种重要的图像过分割,因为医学图像具有边界模糊、不同组织的灰度范围互相重叠的特点,为超像素分割带来极大困难.针对脑部MR图像超像素生成问题,从脑部MR图像的特点出发,充分利用脑部MR图像表达先验知识,结合脑部MR图像的一般结构,定义每个像素属于脑组织中一个类别的概率,并基于分类概率提出一种有效的边界梯度计算方法;在此基础上,提出一种概率密度加权的测地距离脑部MR图像超像素分割算法;最后应用模糊C均值聚类算法作为后续分割处理,获得脑部MR图像的组织分类.与现有算法在分割性能上进行定量比较的实验结果表明,文中算法能够产生更准确的分割边界.

MR图像、超像素、图像分割、测地距离、概率密度

31

TP391.41(计算技术、计算机技术)

国家自然科学基金61772312,61772016;山东省重点研发计划项目2017GGX10110,2017GGX10109;山东大学基本科研业务经费2018JC030

2019-06-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

752-760

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

31

2019,31(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn