期刊专题

10.3724/SP.J.1089.2018.17028

融合去卷积与跳跃嵌套结构的显著性区域检测

引用
针对深度学习的显著性区域检测方法大多存在的显著性图边界信息丢失、轮廓模糊等问题,提出将全局嵌套边缘检测(HED)模型迁移至显著性区域检测任务以增强边界检测,在其基础网络结构之上融入去卷积模块与跳跃嵌套结构,构建了面向显著性区域检测的HED-DSN模型.首先利用去卷积模块以乘积的方式结合底层与高层信息,然后利用跳跃嵌套结构以通道连接的方式将不同层次的特征进行融合,最后用全连接条件随机场对预测得到的显著性图进行优化.在MSRA-B,ECSSD,HKU-IS,SOD和DUT-OMRON共5个数据集上进行实验及模型评价,结果表明,HED-DSN模型在各数据集上均表现良好,不仅能准确地定位出显著性区域,且检测出的区域完整、边界清晰;在客观指标上,该模型的总体性能优于目前最好的DSS模型,且在SOD数据集上提高了近0.7%.

显著性区域检测、端到端、去卷积、跳跃嵌套结构、全连接条件随机场

30

TP391.41(计算技术、计算机技术)

福建省产学合作重大项目2016H6010;福建省自然科学基金2015J01420;福建省引导性基金2016Y0060;福建省卫生教育联合攻关计划项目WKJ2016-2-26

2018-11-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

2150-2158

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn